Cordifoline: a Novel Indole Alkaloid of Biogenetic Interest

By R. T. BROWN* and L. R. Row†

(*Chemistry Department, Manchester University, and †Chemistry Department, Andhra University, Waltair, India)

PREVIOUS investigations on the constituents of the Asiatic tree *Adina cordifolia* yielded the alkaloid adifoline, shown by King and his co-workers to be a β -carboline derivative.¹ We now report the isolation of a new alkaloid, cordifoline, which has been assigned the novel structure (Ia) on the basis of chemical and spectral evidence summarised below.

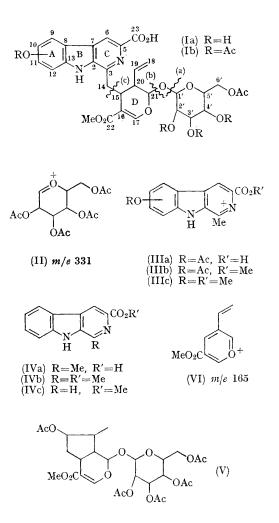
Cordifoline was obtained as the penta-acetate, m.p. 142-144°, which had the constitution $C_{38}H_{40}O_{17}N_{2}$ ‡ It contained two active hydrogens, one of which was removed by methylation with diazomethane to give methylcordifoline penta-acetate, C₃₉H₄₂O₁₇N₂. This was hydrogenated to methyl-C39H44O17N2. dihydrocordifoline penta-acetate, Mild hydrolysis of cordifoline penta-acetate, followed by methylation and re-acetylation, dimethylcordifoline afforded tetra-acetate, C₃₈H₄₂O₁₆N₂. These reactions suggested that cordifoline contained phenolic, carboxyl, and olefinic groups-deductions which were amply supported by spectral data.

A common factor in the mass spectra of all the compounds was a strong peak at m/e 331 ($C_{14}H_{19}O_9$), attributed to the oxonium ion (II), which appropriate metastable peaks showed to be the parent of intense ions at m/e 169, 127, and 109 formed by loss of acetic acid and keten molecules. Complementary ions were found at M-331 ($C_{14}H_{19}O_9$) and

M-347 (C₁₄H₁₉O₁₀) corresponding to cleavages (a) and (b). From double irradiation n.m.r. spectra it was evident that the sugar was an aldohexose with the 6'-methylene group at τ 4.80 coupled to the H-5' at τ 6.30; the other four hydrogens appeared between τ 4.7 and 5.2. Moreover since the four acetyl signals were between τ 7.94 and 8.04, indicating equatorial acetoxy-groups,² the sugar was probably glucose.

The carboline partial structure was suggested by a major peak at m/e 284 ($C_{15}H_{14}O_4N_2$) in the mass spectrum of cordifoline penta-acetate which was assigned structure (IIIa), formed by the favourable cleavage (c) and hydrogen transfer; lesser fragments at m/e 240 and 198 were plausibly derived by loss of carbon dioxide and keten. Corresponding ions were given at m/e 298 (IVb) by methylcordifoline and methyldihydrocordifoline penta-acetates, and at m/e 270 (IVc) by dimethylcordifoline tetraacetate. Further evidence in support of the β -carboline system was supplied by n.m.r. spectra which showed phenolic acetate and NH groups and four aromatic protons. One of the latter was a sharp singlet at τ 1.27 attributed to the ring c hydrogen since it coincided exactly with the corresponding hydrogen in 3-methoxycarbonylharman (IVb) and in 3-methoxycarbonvl- β carboline (IVc); spin decoupling of the other

‡ Since only a small amount of alkaloid was available all formulae were determined by accurate mass measurement.


aromatic hydrogens established that the acetoxygroup must be at either C-10 or C-11. Finally, the u.v. spectrum of cordifoline penta-acetate $[\lambda_{\max}(\log \epsilon): 239 \ (4.66), 271 \ (4.60), 305 \ inf. \ (3.82),$ 338 (3.61), 350 (3.61) m μ] with a bathochromic shift in acid solution was very similar to that of (IVb) $[\lambda_{\max} (\log \epsilon): 235 (4.43), 271 (4.58), 305 (3.84),$ 330 (3.63), 345 (3.63) m μ]. Since an acetoxysubstituent has relatively little effect upon an aromatic chromophore,³ a summation spectrum of harman-3-carboxylic acid (IVa) and loganin pentaacetate (V)§ should, and did, give a fair approximation to that of cordifoline penta-acetate.

The remainder of the molecule was represented by a peak at m/e 165 (C₉H₉O₃), corresponding to the pyrylium ion (VI), in the mass spectra of cordifoline derivatives, which shifted to m/e 167 $(C_9H_{11}O_3)$ after hydrogenation. A vinyl group was indicated by n.m.r. spectra and confirmed when Kuhn-Roth oxidation of methyldihydrocordifoline yielded propionic acid. The presence of the chromophore MeO₂C-CH=CHO. was shown by two strong i.r. bands at 1680 and 1635 cm.⁻¹, u.v. absorption in the 240 m μ region and n.m.r. signals at $\tau 2.51$ (=CHO) and $\tau 6.15$ (CH₃O).

Most importantly, in the n.m.r. spectrum of cordifoline penta-acetate it was possible to locate the hydrogens around ring D and to confirm the assignments by spin-decoupling experiments. Briefly, it was established that the C-20 hydrogen $(\tau \ 7.42)$ was coupled to hydrogens at C-15 $(\tau \ 6.75)$, C-19 (τ 4.25), and C-21 (τ 4.61); the C-15 hydrogen was coupled to the C-14 methylene group (τ 6.25) and also showed a small allylic interaction with the C-17 hydrogen ($\tau 2.51$).

The above evidence leads to the structure (Ib) for cordifoline penta-acetate and hence cordifoline is presumed to have structure (Ia). This is of interest because of its close resemblance to a possible intermediate on the biogenetic pathway to monoterpenoid indole alkaloids from tryptophan⁴

and loganin.^{5,6} Ipecoside^{6,7} may have a similar relationship to the Ipecacuanha alkaloids.

(Received, March 23rd, 1967; Com. 285.)

§ We thank Professor A. R. Battersby for a generous gift of loganin penta-acetate.

¹ A. D. Cross, F. E. King, and T. J. King, *J. Chem. Soc.*, 1961, **2714**. ² R. U. Lemieux, R. K. Kullnig, H. J. Bernstein, and W. G. Schneider, *J. Amer. Chem. Soc.*, 1958, **80**, 6098; F. W. Lichtenthaler and P. Emig, Tetrahedron Letters, 1967, 583, and references quoted therein. ³ e.g., A. I. Scott, "Interpretation of the Ultraviolet Spectra of Natural Products," Pergamon Press, Oxford, 1964,

p. 91.

⁴ E. Leete, Tetrahedron, 1961, 14, 35; D. Gröger, K. Stolle, and K. Mothes, Tetrahedron Letters, 1964, 2579.

⁵ A. R. Battersby, R. T. Brown, R. S. Kapil, J. A. Martin, and A. O. Plunkett, *Chem. Comm.*, 1966, 812. ⁶ A. R. Battersby, "The Chemistry of Natural Products," (IUPAC International Symposium, Stockholm, June, 1966), Butterworths, London, 1966, Vol. 4, in the press.

⁹ A. R. Battersby, B. Gregory, H. Spencer, J. C. Turner, M.-M. Janot, P. Poitier, P. Francois, and J. Levisalles, *Chem. Comm.*, 1967, 219.